
Eddie Price - MA 266, Challenge Problems (SP 19)

No challenge problems for lesson 1.

Lesson 2.

An operator on the set of infinitely differentiable functions (functions for which the nth
derivative exists for every positive integer n) is a function which takes infinitely differentiable
functions as inputs and also has infinitely differentiable functions as outputs. i.e., if O is an
operator on the set of infinitely differentiable functions, then for any infinitely differentiable
function f(x), O[f(x)] is an infinitely differentiable function. A linear operator is an operator
L which satisfies the conditions that
1) for every f(x) and g(x), it is the case that L[f(x) + g(x)] = L[f(x)] + L[g(x)], and
2) for every constant c (an actual number) and for every f(x), it is the case that L[c · f(x)] =
c · L[f(x)].

(One example of a linear operator is differentiation:
d

dx
since

d

dx
[f(x) + g(x)] =

d

dx
[f(x)] +

d

dx
[g(x)] and

d

dx
[cf(x)] = c

d

dx
[f(x)]. Another example is integration where we choose the

arbitrary constant C to be 0. )
In class, we saw that an nth order linear differential equation can be written in the form
f0(x) y(0) + f1(x) y(1) + . . .+ fn(x) y(n) = g(x) for some functions f0(x) , . . . , fn(x) , g(x).
Show that the left hand side of the linear differential equation above is a linear operator on
the set of infinitely differentiable functions. Also, show that any differential equation which
cannot be written in the above form of a linear diff eq also cannot be written in the form
L[y] = g(x) for any linear operator L and any function g(x). i.e., show that a differential
equation is linear if and only if it can be written as L[y] = g(x) for some linear operator L
and some function g(x).

Lesson 3.

Consider the first order linear diff eq
dy

dt
+ p(t) y = g(t). Explain what an integrating factor

is for this diff eq. (Explain what it does.) Then show that µ(t) = exp
(∫

p(t) dt
)

does what
you said an integrating factor does.

Lesson 4.

4.1. Recall that a first order diff eq is separable if it can be written in the form f(x) +

g(y)
dy

dx
= 0 for some function f(x) in the variable x and some function g(y) in the variable y.

Informally, we “separate” the variables and integrate, but this isn’t horribly mathematically
valid. I stated that this method could be made valid by seeing that when we “separate” the

variables, we get F (x) +G(y) = C (where
dF

dx
= f(x) and

dG

dy
= g(y) and C is an arbitrary

constant), and that when we differentiate this equation, we get the differential equation.
Explain why this shows that the method of “separating variables” works.

1



4.2.a. A function y = f(x) is a solution to a first order differential equation
dy

dx
= g(x, y) if

plugging in f(x) for y in the differential equation yields a true statement for every value in
the domain of y. Explain why we must restrict the domain of y to places where dy

dx
is defined.

4.2.b. Consider the first order linear differential equation h(t)
dy

dt
+ p(t) y = g(t). Let c be a

number so that h(c) = 0. Explain why c is not in the domain of any solution to this diff eq.

Lesson 5.

5. Refer to a first-order differential equation as bihomogeneous if there exist positive integers
m and n which are relatively prime (i.e., gcd(m,n) = 1) so that the differential equation can

be written in the form
dy

dx
= g

(
ym

xn

)
for some function g in the “variable”

ym

xn
.

5.a. Consider the substitution u(x) =
ym

xn
. Show that the substitution will work if and only

if m = 1.
5.b. In the case m = 1, prove that the differential equation you obtain after your substitution
will be separable if and only if n = 1 as well (i.e., only in the case where the differential
equation is actually homogeneous).
5.c. In the case m = 1, describe the symmetries of the direction fields of bihomogenous diff
eqs. (in other words, for each positive integer n, describe the symmetry of the direction
field.)

No challenge problems for lesson 6 or 7.

Lesson 8.

8. Consider the first order linear differential equation
dy

dt
+ p(t) y = g(t), where p(t) and g(t)

are continuous for all t-values. Now consider the IVP consisting of the above diff eq and
the initial condition y(0) = y0. The method of integrating factors guarantees that a unique
solution to the IVP exists. Explain why the solution must be unique. (This is tricky! There
are actually two parts to this, not just one! Hint: not only must you show that C is uniquely
determined by the initial condition, you must show that there is no other vastly different
function that can solve the diff eq. To do this, use one of the implications of the Mean Value
Theorem: Any two antiderivatives of the same function differ only by a constant.)

Lesson 9.

Consider the autonomous diff eq
dy

dt
= y sin(πy). Show that the equilibrium solutions of this

diff eq are precisely the equations of the form y = n for an integer n (show every equilibrium
solution is of this form and every equation of this form is an equilibrium solution). For each
integer n, classify whether y = n is asymptotically stable, unstable, or semistable. Do this
without the aid of technology.
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Lesson 10.

10. Sometimes we have a differential equation M(x, y) + N(x, y) y′ = 0 which is not exact.
In this case, it may be possible to use an integrating factor to turn this equation into an
exact equation.
10.a. Show that if there is a function µ(x, y) so that µ(x, y)M(x, y) + µ(x, y)N(x, y) y′ = 0
is exact, then µ must satisfy the partial differential equation Mµy−Nµx+(My −Nx)µ = 0.
10.b. Now, show that any implicit solution ψ(x, y) = C to the exact differential equation
µ(x, y)M(x, y) + µ(x, y)N(x, y) y′ = 0 is also a solution to the original differential equation
M(x, y) +N(x, y) y′ = 0. (Hint: Factor µ(x, y) out of the exact diff eq.)
10.c. Partial differential equations can be quite difficult to solve, so we may seek an inte-

grating factor µ(x) which depends only on x. In such a case, µx =
dµ

dx
and µy = 0. From

your work in part (a), show that if an integrating factor depending only on x exists, then it

must satisfy the first order linear diff eq
dµ

dx
+
Nx −My

N
µ = 0.

10.d. The non-exact diff eq (3xy + y2)+(x2 + xy) y′ = 0 has an integrating factor depending
only on x. Find this integrating factor.
10.e. Using the integrating factor from part (d), find an implicit solution to the non-exact
diff eq (3xy + y2) + (x2 + xy) y′ = 0.

Lessons 11 and 12.

Consider the IVP
dy

dx
=

1

3
3
√
x2
, y(−1) = −1. Try to use the online Euler’s method calculator

to estimate the value of y(1). What happens? Explain why Euler’s method does not produce
an accurate estimate of y(1).

Lessons 13, 14. No challenge problems

Lesson 15.
15.1. Prove that sin(2t) = 2 sin(t) cos(t) and cos(2t) = cos2(t)− sin2(t) for all real numbers

t. (Hint: e2ti = (eti)
2
.)

15.2. Prove that sinh(it) = i sin(t) and cosh(it) = cos(t) for all real numbers t. From here,
conclude that

sin(t) =
eit − e−it

2i
and cos(t) =

eit + e−it

2

Lesson 16. No challenge problems

Lesson 17.
17.1.a. Consider the diff eq y′′ − 4y = sin t. Assume that a particular solution is Y (t) =
A sin(t). Find the value of A which makes the statement true.
17.1.b. Consider the diff eq y′′ + 3y′ − 4y = sin t. Show that Y (t) = A sin(t) cannot be the
form of the particular solution because, if you assume it is, you get a system of 2 different
equations in 1 unknown (the unknown being A), so A would have to be two different numbers
simultaneously.
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17.1.c. Explain why the existence of a y′ term in 17.1.b forces us to add B cos(t) to our
particular solution.

17.2.a. Consider the diff eq y′′ + 2y′ + y = t2. One might initially guess that the particular
solution would be of the form Y (t) = At2. Explain why the existence of the y′ term requires
us to add Bt and the existence of the y′′ term requires us to add C, giving Y (t) = At2+Bt+C.
How is the y term related to the At2 term in Y (t)?
17.2.b. Assume you have a homogeneous second order diff eq with constant coefficents, i.e.,
ay′′ + by′ + cy = 0. Suppose that the solution has a constant term. (This happens if one
of the roots of the characteristic polynomial is 0.) Show that c must be equal to 0 in this
case. (i.e., show that if the solution has a constant term, then the diff eq is of the form
ay′′ + by′ = 0.)
17.2.c. Assume you have a diff eq y′′ + y′ = t2. Our initial guess for Y (t) is At2 + Bt + C
(as seen in 17.2.a). Try plugging in this differential equation. What goes wrong?
17.2.d. Explain why multiplying our initial guess for Y (t) by t fixes the issue. (Think about
your answers to 17.2.a and 17.2.c).

Lessons 18-21. No challenge problems.

Lesson 22.
22.1. Suppose you have an nth order linear diff eq with constant coefficients

any
(n) + an−1y

(n−1) + . . .+ a1y
′ + a0y = 0

Assume that you have a solution of the form y(t) = ert for some constant r. Show that r
must satisfy the equation

anr
n + an−1r

n−1 + . . .+ a1r + a0 = 0

22.2. Suppose you have a 3rd order diff eq ay′′′ + by′′ + cy′ + dy = 0, and suppose you know
that y1, y2, and y3 are solutions. The Wronskian of y1, y2, and y3 is the determinant∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y′′1 y′′2 y′′3

∣∣∣∣∣∣ = y1

∣∣∣∣y′2 y′3
y′′2 y′′3

∣∣∣∣− y2 ∣∣∣∣y′1 y′3
y′′1 y′′3

∣∣∣∣+ y3

∣∣∣∣y′1 y′2
y′′1 y′′2

∣∣∣∣
Similarly to 2nd order equations, the set of solutions is a fundamental set if and only if the
Wronskian is nonzero.
22.2.a. Show that the set {t2 + 1, t2 − t, 2t+ 2} has Wronskian equal to 0.
22.2.b. Show that the set {t2 + 1, t2 + t, 2t+ 2} has nonzero Wronskian.

Lesson 23.
23.1.a. Make sure you have done challenge problem 17.1. Suppose you have a diff eq of
the form a6y

(6) + a4y
(4) + a2y

′′ + a0y = sin(t). Explain why Y (t) = A sin(t) works for the
particular solution (even though we would normally use A sin(t) + B cos(t)). (How are odd
order derivatives related to A sin(t) and/or B cos(t)? What about even order derivatives?)
23.1.b. Make sure you have done challenge problem 17.1. Suppose you have a diff eq of the
form a5y

(5) + a3y
′′′ + a1y

′ = sin(t). Explain why Y (t) = B cos(t) works for the particular
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solution (even though we would normally use A sin(t) + B cos(t)). (How are odd order
derivatives related to A sin(t) and/or B cos(t)? What about even order derivatives?)

23.2.a. Make sure you have done challenge problem 17.2. Suppose you have tn. If n is odd,
show that every odd order derivative is of the form Atm where m is even and that every even
order derivative is of the form Atk where k is odd. If n is even, show that every odd order
derivative is of the form Atk where k is odd and that every even order derivative is of the
form Atm where m is even.
23.2.b. Make sure you have done challenge problem 17.2. Suppose you have a diff eq of the
form a6y

(6) + a4y
(4) + a2y

′′ + a0y = t4. Explain why Y (t) = At4 + Ct2 + E works for the
particular solution (even though we would normally use At4 +Bt3 + Ct2 +Dt+ E).
23.2.c. Make sure you have done challenge problem 17.2. Suppose you have a diff eq of the
form a5y

(5) + a3y
′′′ + a1y

′ = t4. Explain why Y (t) = At5 +Ct3 +Et works for the particular
solution (even though we would normally use t(At4 +Bt3 +Ct2 +Dt+E) - note, we need to
multiply by t because 0 is a root of the characteristic polynomial since the y term is missing
from the diff eq).

Lesson 24. No challenge problems.

Lesson 25. We will prove that L{y′(t)} = sY (s)− y(0), where Y (s) = L{y(t)}.
25.a. By definition, L{y′(t)} =

∫∞
0
e−sty′(t) dt. Use integration by parts with u = e−st and

dv = y′(t) dt to show the integral evaluates to

e−sty(t)
∣∣∞
0

+

∫ ∞
0

se−sty(t) dt

25.b. The integral there is sY (s). Now, the term on the left can be evaluated as

lim
b→∞

[
e−sty(t)

]b
0

Understanding L’Hôpital’s Rule, one can show that if y(t) is a polynomial or a sinusoidal
function, then limb→∞ e

−sby(b) = 0. The only other types of functions we care about are of
the form y(t) = ect. Show that for s > c, we get a limit of 0 here too. Finally, conclude we
actually get sY (s)− y(0).
25.c. Now, show that L{y′′(t)} = s2Y (s) − sy(0) − y′(0). (Hint: Notice that y′′(t) is the
derivative of y′(t), so apply the result twice.)

Lessons 26, 27, 28. No challenge problems.

Lesson 29. An integro-differential equation is an equation involving derivative(s) and inte-
gral(s) of a function.
29.a. Solve the integro-differential equation below by differentiating to obtain a differential
equation. (Hint: the Fundamental Theorem of Calculus implies that d

dt

∫ t
a
f(x) dx = f(t))

y′(t) +

∫ t

0

(t− τ) y(τ) dτ = t, y(0) = 0
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29.b. Now solve the integro-differential equation in 29.a by using the Laplace transform.

Lesson 30. Solve the following system of 2nd order linear diff eqs. (Hint: you can convert
the system of 2nd order linear diff eqs into a single 4th order diff eq and solve for one of the
functions that way.) {

x′′ = y

y′′ = x

Lesson 31.
31.a. Consider the system of differential equations{

x′ = ax+ by

y′ = cx+ dy

Find the characteristic polynomial of coefficient matrix for this system.
31.b. Convert the above system into a 2nd order linear diff eq in the variable x. What is
the characteristic polynomial for the second order equation you got? How does it compare
to the characteristic polynomial you got in part a?
31.c. Convert the above system into a 2nd order linear diff eq in the variable y. What is
the characteristic polynomial for the second order equation you got? How does it compare
to the characteristic polynomial you got in part a and in part b?
31.d. In light of your answers to the previous parts, explain why it isn’t surprising that a
system of 2 first-order linear diff eqs behaves similarly to a single 2nd order diff eq.

Lesson 32.

32.1.a. Solve the system x′ =

(
1/2 1/2
1/2 1/2

)
x

32.1.b. Use pplane to sketch several trajectories of the above system. Describe the phase
portrait.

32.2.a Solve the system x′ =

(
−1/2 −1/2
−1/2 −1/2

)
x

32.2.b. Use pplane to sketch several trajectories of the above system. Describe the phase
portrait.
32.3.a. Find the eigenvalues of and use pplane to sketch several trajectories of the system

x′ =

(
0 1
0 0

)
x. Describe the phase portrait.

32.4. What do you hypothesize the phase portrait looks like if 0 is an eigenvalue?

Lesson 33.
33.1. The purpose of this problem is to recognize that “center ” points in the phase planes
are transitions between asymptotically stable spiral points and unstable spiral points. Philo-
sophically, then, it makes sense that a “center” point is merely stable - it is right in between
an inward pull to the origin and an outward pull away from the origin. In other words, we
can think of a “center” as having a balanced amount of inward pull and outward pull. We
will see this by varying coefficients of the characteristic polynomial for a system.
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33.1.a. Suppose your characteristic polynomial is λ2 + bλ + c (notice that by the way the
characteristic polynomial is defined, we can always get a characteristic polynomial in which
the leading coefficient is 1). Notice that, in order to have non-real complex roots, it must be
the case that b2 < 4c. Convince yourself that you get a center if and only if b = 0 and c > 0.
33.1.b. We will fix c > 0 and let b vary here. Since we get a center if and only if b = 0
in this case, consider values of b slightly less than 0. What happens in the phase portrait
in this case? Also, consider values of b slightly greater than 0. What happens in the phase
portrait in this case? Conclude that, by fixing c > 0 and letting b pass through 0, we get
that a center point is a transition between asymptotically stable spiral points and unstable
spiral points.
33.1.c. We will fix b = 0 here and let c vary. In other words, the characteristic polynomial is
λ2+c. For what values of c do we get a center? For what values of c do we get a spiral point?
Explain why the qualitative transition of the phase plane in this case is unrelated to spiral
points. Explain, then, how centers are related to saddle points, and how one can transition
between the two (what happens to the elliptical orbits as c gets closer and closer to 0 (and
c is positive)? What do solutions look like when c = 0? What happens to trajectories as c
gets closer and closer to 0 (and c is negative)?)

Lesson 34.

34.1.a. Solve the system x′ =

(
2 0
0 2

)
x (Do this the way we have been doing in class by

finding eigenvalues and eigenvectors, but also take note that you really are getting the system
x′ = 2x and y′ = 2y, which implies that x and y really don’t have any relation to each other
at all.)
34.1.b. Use pplane to sketch several trajectories of the above system. Describe the phase
portrait.
34.1.c. We know that eigenvectors give us linear trajectories (along the eigenvector). Use
this fact to explain why the phase portrait looks the way it does.
34.1.d. A fact from linear algebra tells us that if a 2× 2 matrix has 2 linearly independent
eigenvectors, then the matrix is diagonalizable. In other words, the matrix is a matrix
conjugate of a diagonal matrix. In other words, suppose A is a 2×2 matrix with eigenvalues

λ1 and λ2 with eigenvectors z(1) =

(
z
(1)
1

z
(1)
2

)
and z(2) =

(
z
(2)
1

z
(2)
2

)
, respectively. Then

A =

(
z
(1)
1 z

(2)
1

z
(1)
2 z

(2)
2

)(
λ1 0
0 λ2

)(
z
(1)
1 z

(2)
1

z
(1)
2 z

(2)
2

)−1
Use this fact to show that if A is a 2 × 2 scalar matrix with repeated real eigenvalues (i.e.,
λ1 = λ2) and if A has 2 linearly independent eigenvectors, then A is a scalar matrix, i.e.,

A =

(
a 0
0 a

)
for some scalar a. Conclude that if you have a system of diff eqs x′ = Ax

in which A has a repeated (nonzero) eigenvalue, then the solutions of the system/phase
portrait looks like that in 34.1.a or else has the form we discussed in class with generalized
eigenvectors η where the phase portrait has an improper node at the origin. Note then
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that if the functions of your system affect each other and your scalar matrix has a repeated
eigenvalue, then you must use the generalized eigenvector process.
34.2. We will see in this problem how improper nodes are transitions between two other types
of phase portrait structure. We may assume (as in 33.1) that the characteristic polynomial
is of the form λ2 + bλ+ c. Explain why we get an improper node if and only if b2 = 4c (we
may assume that both b and c are nonzero). If b2 < 4c, what does the phase portrait look
like? If b2 > 4c, what does the phase portrait look like? Describe how an improper node is
a transition between two phase portrait behaviors, and state which they are.

Lesson 35. Here, we will develop the method of variation of parameters for 1st order linear
systems. Suppose you have the system

x′ = Ax + g(t)

35.a. Suppose λ1, z
(1) =

(
z
(1)
1

z
(1)
2

)
and λ2, z

(2) =

(
z
(2)
1

z
(2)
2

)
are eigenvalue/vector pairs for A.

Then the “fundamental” matrix Φ(t) is

Φ(t) =

(
z
(1)
1 eλ1t z

(2)
1 eλ2t

z
(1)
2 eλ1t z

(2)
2 eλ2t

)
Show that the matrix product AΦ(t) = Φ′(t) (hint: use the definition of eigenvalues and
eigenvectors - that Az = λz).

35.b. Show that if c =

(
c1
c2

)
where c1, c2 are arbitrary constants, then x = Φ(t)c is the

general solution to the homogeneous system x′ = Ax. (Hint: plug it in and use part a.)
35.c. Assume that the general solution to the above system is of the form x(t) = Φ(t)u(t)
for some vector u(t) whose entries are functions of t. (Note how this is similar to variation
of parameters for 2nd order equations - we take the complementary solution and let the
parameters vary as functions of t rather than being arbitrary constants.) Show that, after
making this assumption, it must be the case that Φ(t)u′(t) = g(t). (Hint: plug Φ(t)u(t) into
the system and use part a.)
35.d. From part c, we can then solve for u(t) by taking the system of equations from part c,
solving for u′1 and u′2 and integrating. Convince yourself that this is true.
35.e. Find the general solution of the system

x′ =

(
2 −1
3 −2

)
x +

(
1
−1

)
e−t

using variation of parameters.
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